Numpy 基礎
- 2023.07.11
- Numpy
NumPy 是 Python語言的一個擴充程式庫。
支援高階大規模的多維陣列與矩陣運算,
此外也針對陣列運算提供大量的數學函式函式庫。
向量 vector
Vector is ordered arrays of numbers.
In notation, vectors are denoted with lower case bold letters such as x.
The elements of a vector are all the same type (dtype
).
The number of elements in the array
is often referred to as the dimension
though mathematicians may prefer rank.
Vector Creation
np.zeros(4) | [0. 0. 0. 0.] (float64) |
np.arange(4) np.arange(4.) |
[0 1 2 3] (int64) [0. 1. 2. 3.] (float64) |
np.random.rand(4) | [0.35838855 0.65743684 0.73020667 0.6198217] |
np.array([5, 4, 3, 2]) np.array([5., 4, 3, 2]) |
[5 4 3 2] (int64) [5. 4. 3. 2.] (float64) |
Slicing and Indexing
Indexing
a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] print(a[2]) # 2 print(a[-1]) # a[-1] := a[len(a) - 1] = 9
向量運算
使用 for 迴圈進行向量運算
使用 numpy
向量加減 | x + y |
Negate elements of x. | –x |
純量乘法 (Scalar Multiplication)![]() |
w * x |
np.dot(x, y) | |
Sum of all elements of x. |
a = np.sum(x) |
Mean of all elements of x. |
a = np.mean(x) |
Create a vector y which ith element of y |
y = x ** a |
矩陣 Matrix
Matrix, are 2-D (two dimensional) arrays.
Matrices are denoted with capitol, bold letter such as X.
m
is often the number of rows and n
the number of columns.
$$ \textbf{X} = \left[
\begin{array}
x_{00} & x_{01} & … & x_{0(n-1)} \\
x_{10} & x_{11} & … & x_{1(n-1)} \\
… & … & … & … \\
x_{(m-1)0} & x_{(m-1)1} & … & x_{(m-1)(n-1)}
\end{array}
\right]_{ \ m \times n} $$
陣列 Array
Array Creation
np.zeros(d_0, d_1, …)
np.shape(array)
Return a tuple of ints,
the elements of the tuple
give the lengths of the corresponding array dimensions.
x = np.zeros(4, 3) """ x = [ [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] """ print(np.shape(x)) # (4, 3)
Last Updated on 2023/08/16 by A1go